Continuum solvent model studies of the interactions of an anticonvulsant drug with a lipid bilayer.
نویسندگان
چکیده
Valproic acid (VPA) is a short, branched fatty acid with broad-spectrum anticonvulsant activity. It has been suggested that VPA acts directly on the plasma membrane. We calculated the free energy of interaction of VPA with a model lipid bilayer using simulated annealing and the continuum solvent model. Our calculations indicate that VPA is likely to partition into the bilayer both in its neutral and charged forms, as expected from such an amphipathic molecule. The calculations also show that VPA may migrate (flip-flop) across the membrane; according to our (theoretical) study, the most likely flip-flop path at neutral pH involves protonation of VPA pending its insertion into the lipid bilayer and deprotonation upon departure from the other side of the bilayer. Recently, the flip-flop of long fatty acids across lipid bilayers was studied using fluorescence and NMR spectroscopies. However, the measured value of the flip-flop rate appears to depend on the method used in these studies. Our calculated value of the flip-flop rate constant, 20/s, agrees with some of these studies. The limitations of the model and the implications of the study for VPA and other fatty acids are discussed.
منابع مشابه
Molecular Insight into the Mutual Interactions of Two Transmembrane Domains of Human Glycine Receptor (TM23-GlyR), with the Lipid Bilayers
Appearing as a computational microscope, MD simulation can ‘zoom in’ to atomic resolution to assess detailed interactions of a membrane protein with its surrounding lipids, which play important roles in the stability and function of such proteins. This study has employed the molecular dynamics (MD) simulations, to determine the effect of added DMPC or DMTAP molecules on the structure of D...
متن کاملDynamic implicit-solvent coarse-grained models of lipid bilayer membranes: fluctuating hydrodynamics thermostat.
We introduce a thermostat based on fluctuating hydrodynamics for dynamic simulations of implicit-solvent coarse-grained models of lipid bilayer membranes. We show our fluctuating hydrodynamics approach captures interesting correlations in the dynamics of lipid bilayer membranes that are missing in simulations performed using standard Langevin dynamics. Our momentum conserving thermostat account...
متن کاملSolvent influence on the interaction of cis-PtCl2(NH3)2 complex and graphene: A theoretical study
In this study the interaction of cis-PtCl2(NH3)2 complex and graphene were investigated with MPW1PW91method in gas and solvent phases. The solvent effect was examined by the self-consistent reaction fieldtheory (SCRF) based on Polarizable Continuum Model (PCM). The selected solvents were chloroform,chlorobenzene, bromoethane, dimethyldisulfide, and dichloroethane. The solvent ...
متن کاملOn Calculation of the Electrostatic Potential of a Phosphatidylinositol Phosphate-Containing Phosphatidylcholine Lipid Membrane Accounting for Membrane Dynamics
Many signaling events require the binding of cytoplasmic proteins to cell membranes by recognition of specific charged lipids, such as phosphoinositol-phosphates. As a model for a protein-membrane binding site, we consider one charged phosphoinositol phosphate (PtdIns(3)P) embedded in a phosphatidylcholine bilayer. As the protein-membrane binding is driven by electrostatic interactions, continu...
متن کاملDynamic studies of the interaction of a pH responsive, amphiphilic polymer with a DOPC lipid membrane.
Deeper understanding of the molecular interactions between polymeric materials and the lipid membrane is important across a range of applications from permeation for drug delivery to encapsulation for immuno-evasion. Using highly fluidic microcavity supported lipid bilayers, we studied the interactions between amphiphilic polymer PP50 and a DOPC lipid bilayer. As the PP50 polymer is pH responsi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 80 6 شماره
صفحات -
تاریخ انتشار 2001